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In  this paper, it  is shown that if two spheres of equal radii are placed axi- 
symmetrically in a steady Stokes stream, separation of the flow from the spheres 
occurs if the distance between their centres is less than approximately 3-67 times 
the sphere radius. For spheres whose spacing is less than this value, wakes form 
on both spheres and the fluid within the wakes moves in closed eddy type motion. 
When the distance between the centres of the spheres is less than approximately 
3-22 times the sphere radius, a cylinder of fluid links both spheres, and within this 
cylinder the fluid rotates in one or more ring vortices, the number of vortices 
increasing as the distance between the spheres is decreased. When the spheres 
are in contact, the fluid rotates in an infinite set of nested ring vortices. 

1. Introduction 
The possibility of separation of a flow from a boundary is a relatively recent 

development in the study of Stokes flows. Jeffery (1922) seems to be the first 
author to have produced a solution to a Stokes flow problem which exhibits this 
phenomenon. He considered the flow generated between two parallel eccentric 
circular cylinders which rotate about their axes, and from his solution, which 
was expressed in bipolar co-ordinates, Jeffery determined the drag and torque 
coefficients for the cylinders. However he did not show that the flow separates 
for sufficiently large eccentricity. This was demonstrated by Wannier (1950), 
who, apparently unaware of Jeffery’s work derived the solution of the problem 
in a different form. Wannier showed that, if the outer cylinder is a t  rest and the 
inner cylinder rotates with constant angular velocity, then, for sufficiently large 
eccentricity, a branch.of the stream surface @ = 0 divides the flow into two 
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parts. One part of the flow rotates about, and in the same sense as, the rotating 
cylinder, while, in the other part of the flow, the fluid rotates in the opposite 
sense to the rotating cylinder in a closed region adjacent to the outer fixed 
cylinder. 

It is also possible to show from Jeffery’s solution that for the case of two 
cylinders of equal radius external to each other, and rotating with angular 
velocities of equal magnitude but of opposite sense in an infinite fluid, a uniform 
stream is induced a t  infinity which is directed normal to the plane containing the 
axes of the cylinders. Prom Jeffery’s expression for the stream function, it can be 
shown that the cylinders are enclosed by the stream surface $ = 0, which 
separates the fluid which flows past the cylinders from that which is trapped in 
a closed circulatory motion about the cylinders. 

A more recent and different example of a separating Stokes flow is that de- 
scribed in papers by Dean & Montagnon (1949) and Moffatt (1964) for the two- 
dimensional motion interior to a wedge-shaped region. By considering solutions 
of the plane biharmonic equation in polar co-ordinates, Dean & Montagnon 
showed that the power of the radial co-ordinate in the solution is complex if the 
angle of the wedge is less than about 146”, which was interpreted by Moffatt 
as indicating the existence of an infinite sequence of eddies near the corner. 
Schubert (1967) showed that the same phenomenon occurs in the neighbourhood 
of the cusp when there is a shear flow over a circular cylinder in contact with a 
plane. Wakiya (1975) has considered the more general case when the cylinder 
intersects the plane, and shows that an infinite sequence of eddies occurs in the 
neighbourhood of the intersection line if the angle of intersection between the 
cylinder and the plane is less than the critical Dean-Moffatt angle. A three- 
dimensional analogue of these results is the infinite set of ring vortices which 
Dorrepaal et al. (1976a) have shown to exist in the conical cusps of a closed 
torus when placed axisymmetrically in a uniform stream. A similar result has 
been derived numerically by Bourot (1975) for the case of a cardioid of revolution. 
A further example of a three-dimensional Stokes flow which separates is the 
axisymmetric flow past a spherical cap. Dorrepaal, O’Neill & Ranger (19763) 
have demonstrated that separation occurs a t  the rim of the cap for all non-zero 
angles subtended a t  the centre of the sphere of fhe cap. When this angle tends to 
zero.and the cap degenerates into a circular disk, the flow does not separate. 

In  the foregoing examples, the flows are either two-dimensional or involve a 
three-dimensional body with a re-entrant boundary. The present paper is 
concerned with convex bodies, namely two equal spheres which are fixed axi- 
symmetrically in a uniform stream of infinite viscous fluid. The exact solution 
for the Stokes flow past these bodies was obtained by Stimson & Jeffery (1926), 
when the spheres are not in contact, and by Cooley & O’Neill(l969) when the 
spheres are in contact. These authors provided expressions for the forces acting 
on the spheres but did not discuss the structure of the flows, which was the 
motivation of the investigation reported in this paper. It is well known that, for 
a sphere in isolation in a uniform stream, no separation of the flow from the body 
occurs. This is found to be true for the case of two spheres when the distance 
between the centres of the spheres is greater than approximately 3-57 times the 
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sphere radius. For spheres whose spacing is less than this value, there is fluid 
attached to either sphere which moves in closed eddy type motion, in wakes 
attached to each sphere if the spacing between the centres of the spheres exceeds 
about 3-32 times the radius. At this spacing, the wakes coalesce and, for smaller 
spacings, there is a cylinder of fluid attached to both spheres such that the fluid 
rotates in one or more ring vortices, the number increasing as the spheres oome 
closer together. In  the case of contact between the spheres, the fluid within the 
cylinder rotates in an infinite set of nested ring vortices. 

2. Statement of the problem 
Two rigid spheres, each of radius a, are placed in a steady stream of infinite 

incompressible viscous fluid of constant density p and viscosity p, so that the 
line of centres of the spheres, which are held a t  rest, is parallel to the direction 
of the stream. The speed of the stream is U and the distance between the centres 
of the spheres is 2ka with k > 1, as illustrated in figure 1. 

Choose cylindrical polar co-ordinates (ar, 0, ax) ,  so that the centres of the 
spheres are a t  r = 0, z = 5 k .  Then, because the flow is symmetrical about the 
z axis, i t  follows that the fluid velocity has cylindrical components of the form 
U(u ,  0, w), with u and w independent of 0. Assuming that the Reynolds number 
Uap/,u for the flow is sufficiently small to allow the inertia terms in the Navier- 
Stokes equations to be neglected, i t  follows that the equations governing the 
motion of the fluid are 

where p is the hydrodynamic fluid pressure. The second of these equations 
implies the existence of a Stokes stream function $which is defined by 

vp = pvzv, v . v  = 0, (2 .1)  

The elimination of p from the first of equations (2.1) shows that $ satisfies the 

The boundary conditions require that u = w = 0 on either sphere and, if the 
undisturbed stream is along the negative z direction, then u = 0, w = - 1 a t  
infinity. These boundary conditions will be satisfied if, on either sphere, 

(2.4) 

where a/an denotes the derivative along the outward normal to either sphere, and 

asr2+z2+m. 
The boundary-value problem posed by equations (2.3), (2.4) and (2 .5)  possesses 

a, unique solution, as shown, for instance, by Finn & No11 (1957). We shall 
consider in turn the properties of this solution for the cases of spheres in con- 
tact (k = 1) and separated spheres ( k  > 1). 

$ - &rz (2 .5 )  

40-2 
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FIGURE 1. The geometry of the problem. 

3. Spheres in contact 

means of tangent-sphere co-ordinates (c, 0 , q )  defined by 
The solution for the stream function is most conveniently represented by 

The spheres are given by 6 = 5 1 and the flow region by 
0 < 19 < 2n. The boundary conditions (2.4) and (2.5) are equivalent to 

< 1, 0 < 7 < co, 
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The solution for $ may be written down by adding 2r2(t2 + q2)-2 to the solution 
found by Cooley & O'Neill (1969) for the problem when the spheres translate 
along their line of centres through a quiescent fluid. Consequently, 

where = -2+2s+s-l(i-e-25) 1 + 2s - e-2S 
s + sinh s cosh s 

It is clear that $( - 5 , ~ )  = $([, r ) ,  and by means of the Hankel transform 

, c =  
s + sinh s cosh s' 

it  follows that, for 0 < 6 < 1, 

(3.5) 

where 
f(<, s) = E(8-l sinh s( + 2 cosh sg + s-l sinh (2 - E )  s} 

- 28-1 sinhsg - 2 cosh sc - r2 cosh sf[ + s-2 cosh (2 - c )  s. (3.6) 

It may be easily verified that f(<, s) is an even function of s which vanishes at 
s = 0. Furthermore f(g, s) is regular in the complex s plane and is real valued 
whenever s2 is real. 

The integral representation 

at (z > O ) ,  

given in Abramovitz & Stegun (1965), enables (3.5) to be rewritten as 

Withf(5, s) given by (3.6) and 0 < < 1, the s-integral can be expressed as a 
sum of residues at the zeros of 2s + sinh 2s = 0 in the upper half of the complex 
s plane. 

The zeros of z+sin z = 0 are z = * A ,  and z = kX, (n = I, 2, ...), where each 
A, is in the first quadrant, X, is the complex conjugate of A,, and the ordering is 
according to increasing real part. Buchwald (1964) has tabulated the first few 
values of An, namely A, = 4.21239 + 2.250733, 

A, = 10.7125 + 3*10319i, 
A, = 17.0734 + 3.551083, 

to six significant figures. As n-tco, A, can be calculated from the asymptotic 
expansion: 

where a, = (2n - 4) m, which is useful in starting a Newton iteration procedure 
for determining A, numerically. 

(3.8) 1 
A, N a, --a,llog ( 2 4  + i log ( 2 4 ,  
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The zeros of 2s+sinh2s = 0 in the upper half of the complex s-plane are 
evidently s = @An and s = +iXn (n = 1, 2, ...). Hence (3.7) may be written as 

It is of particular interest to know the behaviour of + in the neighbourhood of 
the point of contact between the spheres. Here q > 2,  so, with exponentially 
small error, only the first term in the series need be retained, giving 

Since A, is complex, the exponential function of q is oscillatory with period 
47i/Im (A,). Hence, for all E in the range 0 < t < 1, there is an infinity of values of 
q for which + vanishes. Since the flow is symmetrical about the plane z = 0 and 
the axis r = 0, it follows that there exists an infinite set of stream surfaces of 
revolution on which + = 0. These surfaces bound an infinite set of nested ring 
vortices with axes along the z axis, and are attached to the spheres where 

From (3.6), 

(3.9) 

Consequently ~ ( q )  is given asymptotically by 

when 7 9 2 .  Thus the solutions of (3.9) are given asymptotically by 

8 arg (A,) + arg (sin &Al) - arg (1 + cos A,) 

- &q Im (A,) + arg (1  + 3/4A,q) N - (m + a) m, (3.10) 

with m = 0, & 1, 5 2, . . . . When A, is given by (3.8), it follows that the positive 
solutions of (3.10) are given asymptotically by 

+q I m  (A,) - arg (1 + 3/4A, q) N am, (3.11) 

where d, = 3.12411 and dm-dm-, = m (m = 2, 3, ...). Since arg (1 +3/4A,q) < 1 
when IA,Jq B 1, the asymptotic equation (3.11) can be conveniently solved by 
the iterative scheme 

i ~ o I m  (A,) = a m ,  

gVjIm(A1) = dm+arg (1  + 3/4A1'4'i-1) (j 2 I),  
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zeros of ~ ( 1 )  zeros of $ ( O ,  1) 
r A 

\ f  
A 

\ 

m 1 r 7 r Wa 

1 2-755 0.6414 3.047 0.6564 - 6.0 x 10-4 

3 8.352 0.2361 8.642 0.2314 - 2.6 x 10-9 
2 5.562 0.3483 5.847 0.3420 1.2 x 10-6 

TABLE 1 

the suffixj denoting thejth approximation. It can readily be shown that the 

The accuracy of a solution of (3.11) as a solution of (3.9) can be improved by 
considering the error, which is 

Hence a positive correction is .required, which, if applied, enables the values of 
T/ satisfying (3.91, and the corresponding values of r = 27( 1 + q2)-l, to be deter- 
mined correct to four significant figures. These values for the cases m = I, 2, 3 
are given in tabIe 1. 

The intersection of the stream surfaces $ = 0 with the plane z = 0 can be 
determined by noting that (3.6) gives 

+f(O, @A,) = 2Ai2( 1 - cos A,) - 1, (3.12) 

and therefore the zeros of $(O,  7) are given asymptotically by 

$7 Im (A,) - arg (I  + 3/4h,7) - em, (3.13) 

where el = 3.45063 and e,-e,-, = 7~ (m = 2, 3, ...). Equation (3.13) can be 
solved and its solutions corrected in the same way as for the solutions of (3.11). 
The zeros of $ ( O ,  7) and the corresponding values of r = 27-1 on the plane z = 0 
are shown in table 1 for the three cases m = 1 ,2 ,3 .  

Further insight into the flow structure can be obtained by considering the 
velocity in the plane z = 0. Since @ is an even function of c, the velocity com- 
ponent u vanishes on this plane while from (2.2) and (3.1) 

wo = (w)s=o = r_" (2) . 
4 a7 f=O 

(3.14) 

The zeros of wo occur a t  the centres of the sections of the ring vortices in an 
azimuthal plane, while the value of wo at a zero of $(O,  q )  gives the maximum 
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velocity in the ring vortex whose outer boundary is the stream surface $ = 0 
through that zero. It therefore is a good measure of the decay of velocity as the 
point of contact between the spheres is approached. 

For 7 > 2, we find that 

where f(0, &i,) is given by (3.12). The computation of the zeros of wo follows 
in the same way as for earlier c,alculations. We find that the zeros corresponding 
to the centres of the two outermost ring vortices in the infinite nest are 7 = 3.38, 
giving r = 0.592, and 7 = 6-20, giving r =  0.323. At the zeros of $ ( O ,  q ) ,  the 
velocity wo is the real part of (A, + 51?-1+ . . . ) times a purely imaginary expression. 
It is alternately positive and negative a t  these zeros, and 

On substituting the computed values of 7 for which +(O,  7) = 0,  givenin table 1, 
we obtain the values of wo displayed in the table. 

Lastly, we consider the angle a t  which a surface of separation $ = 0 detaches 
from either sphere. The Taylor expansion of $ near 6 = 1 , ~  = 7* has the form 

’ 

where all derivatives are evaluated at (1, y*). However, from (3.9), 

(3.16) 

and if separation occurs a t  7 = 7*, then x(?*) = 0 and the angle of separation 
with the tangent to the sphere is 

Now a3$ 87 * s3Jl(s7*) cosh s ds 
--(1’7*) 8% = (1 +7$)”so 2s+sinh2s ’ 

and from (3.16) 

where both expressions have been simplified by using the condition 

(3.17) 

Each of the integrals can be expanded asymptotically in the manner used for 
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FIGURE 2. A meridional section of the separation stream surfaces. @ = 0 when the spheres 
are in contact. The dots indicate points of zero velocity within the ring vorticee. 

~ ( 7 )  and $(& 7) earlier in the section. By comparison with x(q*) there is a non- 
zero real number K such that 

The constant K depends on T*,  but being a common factor in both expressions 
it is clear that to order q;l all separation surfaces detach from the spheres at the 
same angle, which is 58’ 36’. 

Figure 2 shows the shape of the stream surfaces $ = 0 when drawn using the 
asymptotic expressions derived in this section. It will be observed that the 
surfaces are essentially circular cylinders, the cross-sections tapering slightly 
from the circles of intersection with the spheres to the intersection with the 
plane z = 0, except for the outermost surface, where the reverse occurs, so as to 
preserve the near constancy of the angle of intersection of the stream surface 
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with either sphere. It therefore follows that, in the steady axisymmetric Stokes 
streaming flow past two equal spheres in contact, there is a cylinder attached to 
both spheres within which the fluid rotates in an infinite set of nested ring 
vortices. The existence of infinite sets of eddies is well known in two-dimensional 
Stokes flows. For instance, Dean & Montagnon (1949) and Moffatt (1964) 
demonstrated that such a phenomenon can occur with Stokes flows in the angle 
between intersecting planes provided that the angle of intersection is less than 
146". Schubert (1967) showed that the phenomenon occurs in the neighbourhood 
of the cusp when there is a shear flow over a circular cylinder in contact with a 
plane. A three-dimensional analogue of these results is the infinite set of ring 
vortices which Dorrepaal et al. ( 1 9 7 6 ~ )  have shown to exist in the conical cusps 
of a closed torus when placed axisymmetrically in a stream. However, the 
phenomenon which we have demonstrated to exist in the axisymmetric streaming 
past two spheres in contact does not have a two-dimensional analogue. The 
existence of this complex flow structure when the spheres are in contact leads us 
to wonder how the flow structure is modified when the spheres are drawn apart. 
This we shall consider in the following sections. 

4. Spheres not in contact 
The solution for the Stokes flow produced by the translation of two equal 

spheres along their line of centres with the same velocity was obtained by 
Stimson & Jeffery (1926). Their solution for the stream function is expressed 
in bispherical co-ordinates defined by 

(4.1) 
c sin 7 c sinh ( 

r =  Z =  
Gosh 6 - cos 7' cash ( - cos 7' 

The spheres are given by 5 = ~f: a (a > 0), the radius of either sphere is c cosech a, 
and the distance 2k: between the centres of the spheres is 2ccoth a. Thus, with 
the radii of the spheres and the distance between their centres prescribed, the 
quantities a and c are uniquely determined. The flow region is -a < ( < a, 
0 < 7 < n, 0 < 8 < 277 and the boundary conditions (2.4) and (2.5) are now 
equivalent to 

( 4 4  
a$ $ = - = o  ( ( = * a ) ,  
a6 

c2 sin2 7 
' -2(cosh(-~os7)~ -+0 as ( , q - + O .  (4.3) 

The solution for @ satisfying (2.3) and the boundary conditions (4.2) and (4.3) 
can be obtained by adding &c2 sin2 q/(cosh ( - cos 7)2 to the solution for $obtained 
by Stimson & Jeffery. Accordingly, we have 

where 

c2 sin2 7 
@ = c2(cosh ( - COB v)-P x + 

~ ( c o s ~ ( -  C O S ~ ) ~  
m 

x =  unv, 
n=l 

(4.4) 
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The coefficients A ,  and C, are given by 

A ,  = - n(n -I- I)  2{1- e-(2n+1)or} + (2n + I)  (e2a - 1) 
$(2n - 1 )  ( 2 n  + 1) 2 sinh (2n + I )  a + (2% + 1) sinh 201' (4.7) 

(4.8) 
n(n + I)  2{ 1 - e-(2n+1)a} + ( 2 n  + 1) (I - e-2a) 

c, = 42(2n + 1) (2n + 3 )  2 sinh (2% + 1)  a + (2% + 1) sinh 2a' 

We showed in $ 3  that the flow pattern around two spheres in contact is 
exceedingly complex in the neighbourhood of the point of contact, there being 
an infinite number of circles on the spheres where the stream surfaces detach 
and form the boundaries of closed regions in which the fluid rotates in a system 
of nestedring vortices. For an isolated sphere in a uniform stream, it is well known 
that there is no separation of the flow from the sphere and this we expect to occur 
for the case of flow past two widely spaced spheres. To show that the complex 
flow structure for the spheres in contact develops for flow past separated spheres 
as the minimum clearance between the spheres approaches zero, it  is most con- 
venient to examine the behaviour of the velocity a t  the mid-way point between 
the spheres, i.e. the origin r = z = 0. The components U(ut ,  0 ,  uT) of velocity in 
bispherical co-ordinates are 

where g = cosy. Now the origin r = z = 0 corresponds to t = 0, CT = - 1; thus 
the velocity a t  the origin Y = z = 0 is given by 

, U$ = 0. (4.10) 1 c=o, u=-1 
ut = ~ ( 0 )  = 1-4 

It may easily be verified that, on substitution of x from (4.5) and (4 .6 ) ,  equation 

(4.11) (4.10) reduces to 
w(0) = 1 - 4 P ( a ) ,  

where m 

P(a) = ( Z J z ) - l  ( -  1)"(2n+ 1) (A,+C,) 
n-1 

* ( -  l)"+ln(n+ 1) =zl ( 2 n - l ) ( 2 n + 3 )  

, (4.12) 
Z ( I  -e-@n+l)a) + (2n+ 1)2sinh2a+ (2n+  1) sinh2a 

2 sinh (2% + I) a + ( 2 n  + 1) sinh 201 
X 

on using (4.7) and (4 .8 ) .  The series in (4.12) is an aIternating series whose terms 
decrease to zero monotonically in absolute value. Thus 

8{2( 1 - e-3a) + 9 sinh2 a + 3 sinh 2011 
5( 2 sinh 3 a  + 3 sinh 2a) 

w(0) > 1- 9 

and, since the second term on the right-hand side vanishes as a+m, it  follows 
that w(0) remains positive for sufficiently large a and the direction of flow at the 
origin is thus the same as the stream at infinity if the spheres are sufEiciently 
widely spaced. 
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To examine the behaviour of w(0) as a + 0, we consider the function f(z) defined 

(4.13) 
by n(z2-  1) 2( 1 - e-a*) + z2 sinh2a + z  sinh 2a 

* "' = (2 sinh az + z sinh 2a) cos $nz 

This function has simple poles in the complex z plane at 

z = 2 n + 1  ( n = + l , + 2  ,... ), 2 2  and [{ ( i = l , 2  ,... ), 
where ci are the roots of the equation 

2 sinh az + z sinh 2a = 0, 

excluding z = 0. For all other values of z ,  f(z) is regular. 
If we consider the contour which consists of the semicircle C of radius R in the 

half-plane Re ( z )  > 0 with diameter I? the line segment joining & iR, then because 
Jcf ( z )  dz --f 0 as R -+ co, it  is clear that 

m 

/ p d z  = -q -aJ f(iYl)dY 

= 2ni [sum of residues at poles off(z) in the half-plane Re ( z )  > 01. 

Now 

which, on using results in Gradshteyn & Ryzhik (1965), reduces to 

71 3n2 
2 16' 

f(iy)dy = --+- (4.14) 

The residue of f ( z )  a t  z = 2 is -37~132 and the sum of the residues of f ( z )  a t  
z = 2n+ 1 (n = 1,2,  ...) is 

( - l)n+ln(n + 1) 2( I - e-(2n+1)a) + (2n + 1)2sinh2a + (2n + 1) sinh 2a 
2 sinh (2n + 1) a + (2% + 1) sinh 2a x 

n-1 (2%-1)(2n+3) 
= P(a).  

Thus w(0) = 1 - 42701) = 4&(a), where 

When a < I, this relation gives asymptotically 

&(a) N - Z 
7~ (an cn + bn dn)  cos (nXn/2a) - (bn cn - an dn) sin (nXnl2a) e--nrn/2a 

(cosh X ,  + COSY,)~ 4an,l 
> 

(4.16) 

where X ,  + iYn (n = 1, 2, . . .) are the roots of sinh z + x = 0, excluding z = 0, in 
the first quadrant, and 

a,= (X,+1)2+1- YZ-2e-XncosYn, b, = 2(X,+1)Y,-2e-X~sinY,, 

c,  = cosh X ,  cos Y, + 1, d, = sinh X ,  sin Y,. 

We note that X,+iY, = ix,, with A, defined as in $3.  The expression (4.16) 
shows that the velocity of the fluid at the origin tends to zero as contact between 
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the spheres is approached, but that the direction of the velocity reverses infinitely 
many times before contact occurs. Thus the character of the flow when the 
spheres are close together is quite different from what it is when the spheres are 
widely spaced. 

The velocity a t  any point along the line of centres between the spheres has 
cylindrical polar resolutes U(0,  0, w), where 

which, on substitution for x, gives 

w = l+ (cosh t+ l )+  2 ( -  1)n+1(2n+l)[Ancosh(n-+)(+Cncosh(n+#)(], 
m 

n = l  
(4.17) 

with A ,  and C, given by (4.7) and (4.8). By modifying the function&), an 
alternative series representation for w can be obtained which has a more suitable 
form than (4.17) when a -g 1. This series is 

w($) = &r cosh 45Re 2 (pw cosh ( cosh 
a, 

- qn sinh csinh &&em) (4.18) 
n=l  

with ( C i  - 1) 2( 1 - e-abn) + c i  sinh2 a + cn sinh 2a 
Pn = m) (2cc cosh a& + aCn sinh 2 a )  cos $d&’ 

(c i  - 1) en( 1 - e--OLtn) + +ci sinh 2a -I- 2Cn sinh2 a 
(6 - 4) (2a cosh acn + a<, sinh 201) cos ’ !In = 7 

where again the summation is taken over the zeros Cn of the equation 

which are in the half-plane Re ( z )  > 0. 
We have calculated the values of w for -a < 6 < a, with a taking values in 

the range 0.3 < a 6 2.0, using the series (4.17). Our results indicate that for all 
values of a greater than a;, where a; z 1.18304, which corresponds to a dimen- 
sionless distance 2k between the centres of the spheres of about 3.57, w is positive 
for all 6 in the range -a < ( < a, having B maximum a t  f; = 0 and decreasing 
monotonically to zero a t  t = a. If a!? > a > a:, where a: M 1.05434, w < 0 for 
0 < to < 151 < a and w > 0 for 0 < 151 < to, where to depends on a and is such 
that to = 0 when a = a:. For a: > a > a:, where a: z 0.54587, wisnegativefor 
all 6 in the range 0 < < a and monotonic increasing for am, 2 a > a;, where 
aml M 1.02. As a passes below a;, zeros f. to again occur in w, with w > 0 for 
0 < 5, < Jg1 < a and w < 0 for 0 < 151 < to and to = 0 when a = a: NN 0.51812. 
As a passes below a:, w becomes positive in the range 0 < [ lJ < a, the maximum 
in w occurring a t  ( = 0 next when a = ama M 0.508. These changes in the profile 
of w in the range 0 < < a! are sketched in figure 3. The cycle in the behaviour 
of w is then repeated as the value of a is decreased. In  fact, the behaviour is 
repeated an infinite number of times, corresponding to the infinite number of 
zeros and changes in sign of w(0) as a+ 0. In  table 2 we list the first five zeros of 
w(0, a) in decreasing order of magnitude. 

The table shows that the zeros become closely packed as the spheres approach 

2 sinh az + x sinh 2a = 0 
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at 2k 9% 
1.05434 3.2185 31.94" 
0.51812 2.2745 34.85 
0.3497 2.i24 35.41 
0.2652 2.071 35.61 
0.2140 2.046 35.71 

TABLE 2. Values of the first five zeros of w(0) 

a 

FIGURE 3. The profiles of w along the line of centres 
between the spheres for varying a. 



Separation in Stokes flow 639 

(a) (b )  ( c )  

FIGURE 4. The flow structure in the primary wakes (a) before coalescence, (b)  immediately 
after coalescence, (c)  after coalescence when the two ring vortices have emerged. 

contact. This agrees with the result proved earlier that w(0) has an infinity of 
zeros as a+O. Indeed, all the zeros of w(0) are predicted to no less than four 
decimal places using (4.15) with only the first term retained, on account of the 
rapid growth of Im (6) as n increases. 

The behaviour of w(0) and w(g) for 0 < ,$ < a as a+O is consistent with the 
formation of wakes on the sides of the spheres which face each other. The zeros 
of w(() are at stagnation points where the wake boundaries cross the line of 
centres. The wakes start to form when a = a;, and, as a decreases, these wakes 
elongate along the line of centres and touch when a = a:, the largest zero of 
w(0). The two separate wakes then coalesce. Before coalescence, there is a volume 
of fluid trapped in each wake which rotates in a ring vortex, as illustrated in 
figure 4(a). After the wakes coalesce, these two ring vortices gradually merge 
into one as the distance between the spheres decreases. Figure 4 ( b )  illustrates 
the flow pattern in the wake after coalescence but before the two ring vortices 
have merged. The velocity along the line of centres has maximum magnitude 
a t  two points between the origin and the spheres. Figure 4 (c) indicates the flow 
pattern when the two ring vortices have merged and the maximum velocity 
along the line of centres now occurs a t  the origin. Thus the ring vortices merge 
when a = aml, i.e. when 2k M 3-13. Subsequently the development of secondary 
wakes on the spheres commences when a = a:. These wakes in turn coalesce when 
a = a;, leading to the development of tertiary wakes on the spheres, and so on. 
In  this way, we can visualize how the infinite set of ring vortices, which char- 
acterize the flow structure when the spheres are in contact, can develop in a 
systematic manner if a is decreased, so that the spheres come closer together. 
To verify that this complex wake structure does indeed occur, i t  is necessary to 
trace out the stream surface $ = 0. Without separation of the flow from the 
spheres, the surface $ = 0 would simply consist of the spheres together with the 
line of centres. 

The expression for $, as a function of general values of 5 and 7, is given by (4.4) 
and to find the points ( f ,  7) a t  which $ = 0, other than on the spheres and the 
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line of centres, we found the most satisfactory approach was to fix on a particular 
value of 6 in the range 0 < 6 < a, having chosen a, and carry out a search over 
the values of 7 in the range 7r > 7 > 0 to locate the value of 7 a t  which 4 vanished. 
By refining the subdivisions in the 7 parameter so as to obtain values of $ on 
either side of the zero which would be at most the zero could then be 
accurately determined by interpolation. In  this way we were able to obtain 
accurate values of the cylindrical polar co-ordinates ( r ,  z )  of the points on the 
surfaces $ = 0, using (4.1). In  fact we were able to determine r and z correct 
to three or four decimal places, which would give $ = 0 to at least ten decimal 
places for each of the values of a considered. 

Equation (4.4) is unsuitable for finding the points where the flow separates 
from the spheres, since $ vanishes on the surface of either sphere. Furthermore, 
since a$/a$ = 0 also on either sphere, to find the separation points, it  is necessary 
to find the values of 7 satisfying 

or, equivalently, ra2$/at2I&& = 0. 

On substituting for $, this equation reduces to 

(1 - a2) ( C O S ~ ~  - 3 + 2~ C O S ~  a) m 

+(cosha-g)-+ 2 U:V, = 0, (4.19) 
~ ( C O S ~ C Z - C ) ~  n=l  

where U t  = (n - t)2 A, cosh (n - 4) a + (n + #f2Cn cosh (n + 8) a. 
The value of a when separation first occurs is the largest value of a for which 

i.e. for which 
m 

(cosha- 3) + (cosha+ I)-* 2 ( -  l)n+1(2n+ 1) U: = 0. (4.20) 
4(COSha+ 113 n = l  

Other solutions of (4.20) give the values of a when secondary, tertiary, etc., 
wakes start to form. It may be verified that (4.20) is equivalent to 

showing that separation starts to occur when the second derivative of the velocity 
along the line of centres vanishes on either sphere. Thus the solutions of (4.20) 
are a = at, a: and so on. 

In  figure 5 ,  we have plotted the traces of the stream surfaces $ = 0 in the 
r ,  z plane with z 2 0 for a = 1.1, 1.05434, and 0.9. These three values of CI. 

illustrate in turn the shapes of the primary wakes when they are separate and 
attached to the spheres, when they are about to coalesce, and after coalescence 
has occurred. 

Prior to coalescence, the primary wakes are similar to the inertial wake which 
forms on the downstream side of a sphere when the Reynolds number is increased, 
as shown in Van Dyke (1975). When the primary wakes make contact and 
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FIGURE 6. Plot of meridional sections of the stream surface 
@ = 0 for 01 = 1.1, 1.05434 and 0.9. 

coalesce, it  will be seen in figure 5 that the wakes become conical in shape as this 
critical state is reached. This interesting feature of the flow can be verified 
analytically by considering the form of the stream function in the neighbourhood 
of the point of contact and coalescence, i.e. the origin r = z = 0. To carry out this 
examination, i t  is convenient to work in spherical polar co-ordinates (R, 4, O), 
related to the cylindrical polar co-ordinates ( r ,  8, z )  in the usual way. 

Since @ satisfies the repeated axisymmetric Stokes operator equation (2.3), 
and is symmetric about the plane 9 = an, the expansion of 2(. about the origin 
has the form: 

$(R, 4; a)  = A(a) R2 sin2 4 + B(a) R4 sin2 4( 1 - 5 cos2 4) 
+C(a)R4sin24+... . (4.21) 

Since the wakes attached to the spheres coalesce when a = a+, it follows that 
A(.+) = 0. Thus near the origin 

$(R, $; a+) N R4sin2$[B(a+) + C(a+) - 5B(a+) cosz$]. (4.22) 
41 F L M  77 
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z 1 I I I I I 

1 I I I I I 

FIGURE 6. Plot of a meridional section of the stream 
surfaces @ = 0 for 01 = 0.52. 

4 

It is therefore evident that the surface @ = 0 consists locally of the axis of sym- 
metry g5 = 0, 7~ together with st cone whose semi-vertical aagle #c is given by 

cos #c = (4.23) 

To determine B(at) and C(cc+) we note that the fluid velocity along the line of 
centres between the spheres and the radial pressure gradient at the origin are 

w(R) = [L*] = [8B(at)-22C(at)]R2+ ..., (4.24) 
~ 2 s i n +  a+ +o 

(4.25) 
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FIGURE 7. Plot of a meridional section of the 
stream surfaces @ = 0 for a = 0.3. 

F(at)  = lim- w(R) G(a+) = [g] , 
R+O R2 ' R=O 

we find from (4 .23 )  8F 
tan2#e = - 

2F - G. 

643 

(4.26) 

We determine P(a') by expanding w(c), as given by (4.18), in powers of c 2  and 
recognizing that, to the first order, 

c2 N 4R2/c2. (4.27) 
As a result, 

r2( 1 - e--5iat) + el sinh 201' - 6: sinh2 01' 
(sinh Za' + 2a' cosh Cl a') cos ($mel) P(a+) N -- 

On the other hand, using (4.4), we find that G(at) is given by 

A function similar tof(z) in (4.13) can be found which permits the following 
asymptotic expression for G(at) to be derived: 

1. (4.30) 
(c! - 5) [2(  1 - e-ka') + el sinh 2at] - [ Z ,  sinh2at 

G(o~') N - - (sinh 201' + 2at cosh a') cos &rel 
41-2 
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Combining (4.28) and (4.30) in accordance with (4.26), we can compute the 
angle $c for a given value of at. The results are contained in table 2, and 
suggest that q5c has a limit as ht --f 0. Now at is a solution of &(a) = 0, where 
&(a) is given by (4.i5); hence 

Re{(=) 

4 sinh2 (& a') + ct sinh2 at 
c: - 4 (sinh 2at + 2at cosh Q a') cos &rgl 

(4.31) 

with exponentially small error introduced by retaining only the leading term. 
The zero c1 depends on at but is such that at 3 iXl as a+ 3 0, where A, is given 
by (3.8). Equation (4.31) may be used, as in $3,  to eliminate cos 8.Q from the 
ratio FIG, thus expressing it as a ratio of imaginary parts. On substituting into 
(4.26) and noting that sin A, + A, = 0,  it  follows that 

lim tan2 q5c = 4 - 16 Im (cos A,)/Im (A:), 

lim $c = 35-89'. 

at+0 

which accordingly gives 
at+0 

Figure 6 illustrates the case a = 0.52, when a secondary wake has formed on 
either sphere. The plot for a = 0.3, shown in figure 7, illustrates a case when 
primary, secondary and tertiary wakes have coalesced. The shape of the wake 
boundaries now takes on the appearance of that of the spheres in contact, as 
shown in figure 2. For all a < a:, there is a surface attached to both spheres which 
divides the main streaming flow past the spheres from a closed region in which 
the fluid rotates in one or more ring vortices. As a + 0, this stream surface becomes 
essentially a circular cylinder slightly pinched where it intersects the spheres. 

The work described in this paper was carried out in part while one of us 
(M. E. O'Neill) was visiting the Department of Mathematics, University of 
Toronto, and was supported by the National Research Council of Canada. 
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